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Abstract

An edge covering of G is a subset S & E(G) such that each vertex of G is end of some
edge in S. The number of edges in a minimum edge covering of G, denoted by ' (G) is the
edge covering number of G, A subset 7 € S is called a forcing subset for S if S is the unique
minimum edge covering containing T. A forcing subset for S of minimum cardinality is a
minimum forcing subset of S. The forcing edge covering number of S, denoted by fp(S), is
the cardinality of a minimum forcing subset of S. The forcing edge covering number of G,
denoted by fﬁ.(G), is fﬂ.(G) = min {fﬁr(S)}, where the minimum is taken over all minimum
edge coverings S in G. Some general properties satisfied by this concept is studied..The forc-
ing edge covering number of certain classes of graphs are determined. It is shown that for
every pair a, b of integer with 0 < a < b and b = 2, there exists a connected graph G such
that fﬁ,(G) =aand B(G) = b.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph
without loops or multiple edges. The order and size of G are denoted by
p and q respectively. For basic definitions and terminologies we refer to
[1]. An edge covering of G is a subset S € E(G) such that each vertex of G
is end of some edge in S. The number of edges in a minimum edge cover-
ing of G, denoted by B'(G) is the edge covering number of G. The forcing
concept was first introduced and studied in minimum dominating sets in
[2]. And then the forcing concept is applied in various graph parameters
viz. geodetic sets, hull sets, matching’s, and Steiner sets in [3, 4, 5, 6, 7] by
several authors. In this paper we study the forcing concept in minimum
edge covering of a connected graph. Throughout the following G denotes
a connected graph with at least three vertices. The following observation
is used in the sequel.

Observation 1.1. Each end-edge of G belongs to every edge covering of G.

2. The forcing edge covering number of a graph

Even though every connected graph contains a minimum edge cov-
ering, some connected graph may contain several minimum edge cover-
ings. For each minimum edge covering S in a connected graph G, there
is always some subset T of S that uniquely determines S as the minimum
edge covering containing T. Such “forcing subsets” will be considered in
this section.

Definition 2.1. Let G be a connected graph and S a minimum edge cov-
ering of G. A subset TC S is called a forcing subset for S if S is the unique
minimum edge covering containing T. A forcing subset for S of mini-
mum cardinality is a minimum forcing subset of S. The forcing edge covering
number of S, denoted by f4(S). is the cardinality of a minimum forcing
subset of S. The forcing edge covering number of G, denoted by fg(G), is
I(G) = min{fz(S)}, where the minimum is taken over all minimum edge
coverings S in G.

Example 2.2. For the graph G given in Figure 1, § = {v|v,,v3v,,vsvs} is
the unique minimum edge covering of G so that fg(G) = 0 and for the
graph G given in Figure 2, S| = {v|v,,v3v4,v3vs}, S2 = {v|v5,vyvs, V34 }
S3={v Vs, VaVs, V3Vs}, Sq4 = {v Vs,Vov3,v3v4} and Ss = {v vy, v3vy,v s}
are the only five minimum edge coverings of Gsuch that fﬁ-(Sl) =fﬂ,(S4) =1
and fg(S;) = fp(S3) = fp(Ss) = 2 so that f5(G) = L.
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The next theorem follows immediately from the definition of the
edge covering number and the forcing edge covering number of a con-
nected graph G.

Theorem 2.3. For every connected graph G,0 < f3(G) < ' (G).

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the graph G giv-
en in Figure 1, fz(G) = 0 and for the graph G = K3, f5(G) = B'(G) = 2.
Also, all the inequalities in the theorem are strict. For the graph G given in
Figure 2, f3(G) = 1 and B'(G) = 3 so that 0 < fp(G) < B(G).

In the following, we characterize graphs G for which bounds in the
Theorem 2.3 attained and also graph for which 1p(G) = 1.

Theorem 2.5. Let G be a connected graph. Then
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(a) /p(G) = 0 if and only if G has a unique minimum edge covering.

(b) fg(G) = lifand only if G has at least two minimum edge coverings,
one of which is a unique minimum edge covering containing one of
its elements, and

(c) fp(G) = B'(G) if and only if no minimum edge covering of G is
the unique minimum edge covering containing any of its proper
subsets.

Proof.

(a) Let fg(G) = 0. Then, by definition, Jp($) = 0 for some minimum
edge covering S of G so that the empty set ¢ is the minimum forcing
subset for S. Since the empty set ¢ is a subset of every set, it follows
that S is the unique minimum edge covering of G. The converse is
clear.

(b) Let /p(G) = 1. Then by Theorem 2.5(a), G has at least two minimum
edge coverings. Also, since fz(G) = 1, there is a singleton subset T
of a minimum edge covering S of G such that T is not a subset of any
other minimum edge coverings of G. Thus S is the unique minimum
edge covering containing one of its elements. The converse is clear.

(c) Let fg(G) = B'(G). Then fz(S) = B'(G) for every minimum edge
covering S in G. Since, ¢ = 2, f'(G) = 2 and hence fp(G) 2 2. Then
by Theorem 2.5(a), G has at least two minimum edge coverings and
so the empty set ¢ is not a forcing subset for any minimum edge
covering of G. Since fg(S) = B'(G), no proper subset of S is a forc-
ing subset of S. Thus no minimum edge covering of G is the unique
minimum edge covering containing any of its proper subsets. Con-
versely, the data implies that G contains more than one minimum
edge covering and no subset of any minimum edge coverings S other
than S is a forcing subset for S. Hence it follows that 1p(G) = B'(G).

Definition 2.6. An edge ¢ of G is said to be an edge covering edge of G if
belongs to every minimum edge covering of G.

Remark 2.7. By Observation 1.1, each end edge of G is an edge covering
edge of G. In fact there are certain edge covering edges which are not end
edges of G as the following example shows.

Example 2.8. For the graph G given in Figure 3, S| = {v,v,,v;3v¢,v4vs} and
S2 = {v,v3,vv6,v4vs} are the only two minimum edge coverings of G. It is
clear that v,vs is an edge covering edge of G which is not an end edge of G.
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Theorem 2.9. Let G be a connected graph and let 3 be the set of relative
complements of the minimum forcing subsets in their respective mini-
mum edge coverings in G. Then NrexF is the set of edge covering edges
of G.

Proof. Let W be the set of all edge covering edges of G. We have to show
that W=Ny.yF Let e€ W. Then ¢ is an edge covering edge of G that be-
longs to every minimum edge covering S of G. Let TC S be any minimum
forcing subset for any minimum edge covering S of G. We claim that ¢ & T
IfeeT thenT =T—{e}isa proper subset of T such that S is the unique
minimum edge covering containing 7’ so that 7"’ is a forcing subset for S
with | 7’| <|T|, which is a contradiction to T is a minimum forcing subset
for S, Thus ¢ € T and so ¢ € F, where F is the relative complement of T in
S.Hence ¢ €NpcyF so that WCNrexF

Conversely, let e €Ny F. Thene belongs to the relative complement
of T'in S for every T and every S such that TC S, where T is a minimum
forcing subset for S. Since F is the relative complement of T in S, we have
F< S andthus e e s for every S, which implies that ¢ is an edge covering
edge of G. Thus e € W and so NrexF S W. Hence W =NgexF.

Corollary 2.10. Let G be a connected graph and S a minimum edge covering
of G. Then no edge covering edge of G belongs to any minimum forcing
subset of S.

Proof. The proof is contained in the proof of the first part of Theorem 2.9.
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Theorem 2.11. Let G be a connected graph and W be the set of all edge
covering edges of G. Then fz(G) < B'(G) —|W/|.

Proof. Let S be a minimum edge covering of G. Then f'(G) =[S|WE S
and S is the unique minimum edge covering containing §— W. Thus
Ig(G)S|S=W[=|S|-|W|=B(G) - |W]

Corollary 2.12. If G is a connected graph with k end edges, then
Ig(G) < B(G)—k

Proof. This follows from Observationl.1 and Theorem 2.11.

Remark 2.13. The bound in Theorem 2.11 is sharp. For the graph G given
in Figure4, S| = {v,v,,v3V4,VsVe vsvyyand Sy = {v vy, V3V, VsVe, v, V7t are
the only two minimum edge coverings of G such that fg(S;) = fg(S,) =1
and B'(G) = 4 so that fg(G) = 1. Also, W = {v,v,,v3v4,vsv} is the set of
all edge covering edges of G and so fg(G) = B'(G) —|W|. Also, the in-
equality in Theorem 2.11 can be strict. For the graph G given in Figure 3,
B'(G) =3 and fg(G) = 1. Now, v,vs is the only edge covering edge of G
and so fg(G) < B'(G) —|W|.

In the following we determine the forcing edge covering number of
some standard graphs.
1 if piseven

Theorem 2.14. For any cycle C,(p = 4), f;B'(Cp) = {2 P e b

Proof. If pis even and let p = 2n. Let Cp: v, v5,v;5,...,v,,, v, be the cycle of
order 2n. Now, itisclear thatthesets S| = {v,v3,V3V4,VsVe, ..., Va,— | V2, } and
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S2 = {VyV3.V4Vs.V6VayeeesVan— 2Van— 1. V2,V } are the only two minimum edge
coverings of Cp, such that T (S)) = /g (S;) = land so Jg(Cp) =1.Letp=5
beoddand let p = 2n + 1. Let Cp: v|,v4,v5,...,v5, 4 1.V, be the cycle of order
2n + 1. Now, it is clear that the sets S| = {v| v, V3V4u..uyVap_ | Vo VanVan+ 1 b
S2 = {VivaVavae o Vou Vo Vans i} S5 = (VaVa vy Vse o Vo Vans 10 Van 41
‘)I} ------ S 2n = {"2/:—2"2n—-]‘"31:"2n+I'VIV.’_'-"'v2n—3v2n—2}* S2n+l = {v2n—-1
Vo Van+ 1V Va Vieeens Vay_2Vay— 1t are the only 27+ 1 minimum edge
coverings of C,. It can be easily seen that Jp(Cp) 2 2. Since S, is the
unique edge covering containing 7 = {v,,_ vy, Vo, V2,4 }. it follows that
I (S1) = 2. Thus fg(Cp) = 2.

Theorem 2.15. A set S of edges of G = K,.,(n>2) is a minimum edge
covering of G if and only if S consists of 7 independent edges.

Proof. Let S be any set of # independent edges of G = K,.,(n > 2). Since
each vertex of G is incident with an edge of S, it follows that B'(G) < n.
If B'(G) < n, then there exists an edge covering S’ of G such that | §’| < n.
Therefore, there exists at least one vertex v of G such that v is not incident
with any edge of S and so S’ is not an edge covering of G, which is a con-
tradiction. Hence S is a minimum edge covering of K...

Conversely, let S be a minimum edge covering of G. Let S’ be any set
of nindependent edges of G. Then as in the first part of this theorem, S’ is a
minimum edge covering of G. Therefore, | $'| = n. Hence |S|= n. If S is not
independent, then there exists a vertex v of G such that v is not incident
with any edge of S. Hence S is not an edge covering of G, which is a con-
tradiction. Thus S consists of # independent edges.

Theorem 2.16. For the complete bipartite graph G = Kn.(n= 2).
./'ﬂ.(G) =n-—1,

Proof. Let X = {uu,,....u,} and ¥ = {v|,v,,...,v,} be a bipartition of G.
Let 5 be a minimum edge covering of G such that | S| = n. Then by Theorem
2.15, every element of S is independent. We show that fg(G)=n—1.
Suppose that fg(G) <n— 2. Then there exists a forcing subset T of S
such that S is the unique minimum edge covering of G containing T and
|T|< n—2. Hence there exist at least two edges u;v;.u,v,, €S such that
uivpuv, ET and i #1, j# m. Then S| = S~{u;v;,u,v, }u {u;vpou,v;} is a
set of n independent edges of G containing T. By Theorem 2.15, S, is a
minimum_.edge covering of, G which is a contradiction to T is a forcing
subset of S. Hence fg(G) =n— 1.
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Theorem 2.17. A set S of edges of G = Knx(2<m <n) is a minimum
edge covering of G if and only if S consists of m — 1 independent edges of
G and n—m + 1 adjacent edges of G.

Proof. Let X = {u,,us,....,u,,} and Y = {v},v,,...,v,} be a bipartition of G.
Let S be any set of m — | independent edges of G and n —m + | adjacent
edges of G. Since each vertex of G is incident with an edge of S, it fol-
lows that B'(G) < n.If B'(G) < n, then there exists an edge covering S’
of G such that | §'| < n. Therefore, there exists at least one vertex v of G
such that v is not incident with any edge of $" and so S’ is not an edge
covering of G, which is a contradiction. Hence S is a minimum edge
covering of G.

Conversely, let S be a minimum edge covering of G. Let S’ be any set
of m — | independent edges of G and n—m + 1 adjacent edges of G. Then
as in the first part of this theorem, S’ is a minimum edge covering of G.
Therefore, |S'| = n. Hence | S| = n. Let us assume that § = §,US,, where
S| consists of independent edges and S, consists of adjacent edges of G. If
|S;|< m — 2, then S, must contain atmost 7 — |, | edges. Then there exists
at least one vertex v of X such that v is not incident with any edge of S and
so S is not an edge covering of G, which is a contradiction. Therefore S
consists of m-1 independent edges of G and n — m + 1 adjacent edges of G.

Theorem 2.18. For the complete bipartite graph G = Kmn(2 <m <n),
fpG) =n—1

Proof. Let X ={uju,y....un} and Y={vv,...,v,} be a biparti-
tion of G. Let S be a minimum edge covering of G. Then by Theorem
2.17,5 = S;US,, where S, consists of m —1 independent edges and
S, consists of n—m+ 1 adjacent edges and |S|=n We show that
[p(G)=n—1. Suppose that fg(G)<n—2. Then there exists a forcing
subset T of G such that S is the unique minimum edge covering of G con-
taining T and |T|< n — 2. Hence there exist at least two edges x,y €S
such that x,y € T. Let us assume that Sy = {upv .U,V s Uk Vi m+1}-
Suppose that x,y € S;. Then x = u;v; and y = u;v,, such that i #1 and
j#m. Now, Sy =5—{x,y}U{u;v,,, u;v;} consists of m — 1 independent
edges and n —m + | adjacent edges of G containing T. By Theorem 2.17,
S5 is a minimum edge covering of G, which is a contradiction to T is a
forcing subset of G. Suppose that x,y € S;. Let x = w;v; and y = uv)s.
Let u;v; be an edge of S,. Now, join the vertices v, v3,....Vin—m+1 tO Ui
Now Sy = 8, = {u;v; PO {ugvy YU{uivj uivp v, oo UiV, — 4 } cODSists of
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7 = | independent ed gesand n—m + | adjacent edges of G, By Theorem
217, 8, is a minimum edge covering of G containing T, which is a contra-
diction. Suppose that x Stand ye S, Lat x = uiviand y = uv,,. S =
l St={uv;yu{y, ViU {ugv, UV Uk Vg, vy, 1} consists of m — | in-

dependent edgesand n —m + | adjacent edges of G containing T. By Theo-
rem2.17, Ss is a minimum edge covering of G, which is a contradiction to
that Tis a forcing subset of G, Hence Jg(@)=n-1.

Theorem 2.19. For the complete graph G = Kp(p = 4) with P even, aset S
of edges of G is a minimum edge covering of G if and only if S consists of
?) independent edges.

Proof. The proof is similar to the proof of Theorem 2.15,

Theorem 2.20. For the complete graph G = Kp(p = 4) with P even,

- _ D2
IpG =L==

Proof. The proof is similar to the proof of Theorem 2.16,

Theorem 2.21. For the complete graph G = Kp(p = 5) with podd, a set S

of edges of G is a minimum edge covering of G if and only if S consists of
=3
= >— independent edges and two adjacent edges of G,

<

Proof. The proof is similar to the proof of Theorem 2.17,

Theorem 2.22, For the complete graph G = Kp(p = 5) with podd,
. _prp-1
Jp(G) = 5

Proof. The proof is similar to the proof of Theorem 2.18.
Theorem 2.23. For the star G = K q4(g=2), Jg(G) =0,

Proof. For G = K\ 4. it follows from Observation 1.1 that the set of end
edges of G is the unique minimum edge covering of G. Now, it follows
from Theorem 2.5(a) that Jp(G) =0,

In view of Theorem 2.3, we have the following realization theorem

Theorem 2.24, For every pair a,b of integers with (0 < 4 < and 6> 2,
there exists a connected graph G such that I8(G) =aand B (G) = b.

Proof. If a =, Jet G = Ki.». Then by Theorem 2.23, f3(G) =0 and by
Observation 1.1, B (G) = b, Thus, we assume that () < a<blfb=qg+],
then let G = Ks.». By Theorem 2.16, fpG)=b-1=4 and B'(G) = p,
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If b£a+ 1, then let H=K2a. Let U= {x,y} and W= {Wi, Was s Wa}
be a bipartite set of H. Let G be the graph in Figure 5 obtained from H
by adding b —a new vertices z,2;,23,..:Zp~a-| and joining each vertex
z;(1 < i < b—a—1) with y and join z with x. First we show that 8’ (G) = b. Let
Z = {X2,921,Y22: -+:¥Zh—a~ 1} De the set of end edges of G. By Observation
1.1, Z is a subset of every edge covering of G. It is clear that Z is not an edge
covering of G. Let H; = {h; ki} (1 =i = a), where h; = xw; and k; = yw;. It
is easily observed that every edge covering of G must contain at least one
vertex from H;(1<i<a).Thus B'(G)=b—a+a=>b.Onthe other hand,
since the set S = ZU{hy.hs,....h,} is an edge covering of G, it follows that
B (G) <|S|= b. Thus B'(G) = b. Next we show that fg(G) = a. Since ev-
ery minimum edge covering of G contains Z, it follows from Theorem 2.11
that fg(G) = B (G)—|Z|= b~ (b—a) = a. Now, since B'(G) = b and ev-
ery edge covering of G contains S, it is easily seen that every minimum
edge covering W is of the form WU {e.es.....eq}, Where g, € Hi(1 =i = a).
Let T be any proper subset of S with |T| < a. Then there exists an edge
¢j(1 <j<a) such that ¢; €T. Let f; be an edge of H; distinct from ¢;.
Then W, = (S — ¢;) U{f;} is a minimum edge covering properly containing
T Thus W is not the unique minimum edge covering containing T. Thus T
is not a forcing subset of S. This is true for all minimum edge coverings of
G and so it follows that fg(G) = a.

The upper forcing geodetic number of a graph is introduced in [8]. By
the similar manner the upper forcing edge covering number of a graph is
defined in the following definition.

Wo

G

Figure 5
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Definition 2.25. Let G be a connected graph and S a minimum edge cov-
ering of G. A subset TC S is called a forcing subset for S if S is the unique
minimum edge covering containing T. A forcing subset for S of minimum
cardinality is a minimum forcing subset of S. The forcing edge covering num-
ber of S, denoted by /g ($). is the cardinality of a minimum forcing sub-
set of S. The upper forcing edge covering number of G, denoted by f (G),
is f (G) = max{ fﬂ (S)}, where the maximum is taken over all rmrumum

edge coverings S in G.

For the graph G given in Figure 2, fg(G) =1, f (G)=2 and
B'(G) = 3. So we leave the following problem as open questlon

Problem 2.26. For every integers a, b and ¢ with 0 <a < b < c¢,c > 2, does

there exists a connected graph G such that fz(G) = a, fﬁ (G)=b and
B (G) =c.
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